Built-in Actions Reference#

Parent document: YAML Reference Related: Node Specification | Template Syntax Epic: DOC-002

Overview#

The Edge Agent provides 100+ built-in actions organized into 12 categories. Actions are the building blocks for YAML agent workflows, providing capabilities from LLM calls to file I/O, data processing, memory persistence, reasoning patterns, multi-agent coordination, and cloud production deployment.


Quick Reference#

Action

Description

Document

llm.call

Call LLM API

LLM

llm.stream

Stream LLM response

LLM

llm.tools

Function/tool calling

LLM

http.get

HTTP GET request

I/O

http.post

HTTP POST request

I/O

file.read

Read file

I/O

file.write

Write file

I/O

json.parse

Parse JSON string

Data

json.transform

JMESPath/JSONPath transform

Data

memory.store

Store in session memory

Memory

ltm.store

Long-term memory store

Memory

vector.query

Semantic search

Integrations

web.scrape

Web scraping

Integrations

retry.loop

Retry with correction

Specialized

ratelimit.wrap

Rate limit any action

Specialized

secrets.get

Get secret value

Specialized

secrets.has

Check secret exists

Specialized

reason.cot

Chain-of-Thought reasoning

Reasoning

reason.react

ReAct reasoning loop

Reasoning

reason.self_correct

Generate-critique-improve

Reasoning

reason.decompose

Problem decomposition

Reasoning

agent.dispatch

Single agent task dispatch

Agent

agent.parallel

Parallel multi-agent execution

Agent

agent.sequential

Sequential agent chaining

Agent

agent.coordinate

Leader-worker coordination

Agent

agent.crewai_delegate

CrewAI integration

Agent

a2a.send

Send message to agent

A2A

a2a.receive

Receive messages

A2A

a2a.broadcast

Broadcast to namespace

A2A

a2a.delegate

Request/response delegation

A2A

a2a.state.get

Get shared state

A2A

a2a.state.set

Set shared state

A2A

a2a.discover

Discover agents

A2A

reflection.loop

Generate-evaluate-correct loop

Reflection

reflection.evaluate

Standalone evaluation

Reflection

reflection.correct

Standalone correction

Reflection

session.load

Load session data

Cloud Production

session.save

Save session data

Cloud Production

firestore.get

Get Firestore document

Cloud Production

firestore.set

Set Firestore document

Cloud Production

firestore.query

Query Firestore

Cloud Production

auth.verify

Verify auth token

Cloud Production

validate.input

Validate input data

Cloud Production

http.respond

Custom HTTP response

Cloud Production

error.is_retryable

Check if error is retryable

Cloud Production


Action Categories#

LLM Actions (4 actions)#

Language model integration with multiple providers.

Action

Description

llm.call

Call OpenAI-compatible LLM API

llm.stream

Stream LLM responses with chunk aggregation

llm.retry

LLM calls with exponential backoff retry

llm.tools

Function/tool calling with action dispatch

Providers: OpenAI, Azure OpenAI, Ollama, LiteLLM (100+ models)


I/O Actions (10 actions)#

HTTP requests, file operations, and cloud storage.

Action

Description

http.get

HTTP GET request

http.post

HTTP POST request

file.read

Read local or remote files

file.write

Write local or remote files

storage.list

List files in directory

storage.exists

Check if file exists

storage.info

Get file metadata

storage.copy

Copy files (cross-cloud)

storage.delete

Delete files

storage.mkdir

Create directories

Cloud Support: S3, GCS, Azure Blob via fsspec


Data Processing Actions (15 actions)#

JSON/CSV parsing, validation, transformation, and code execution.

Action

Description

json.parse

Parse JSON string to object

json.transform

Transform with JMESPath/JSONPath

json.stringify

Convert object to JSON string

csv.parse

Parse CSV to list of dicts

csv.stringify

Convert list to CSV

data.validate

Validate against JSON Schema

data.merge

Deep merge dictionaries

data.filter

Filter list with predicates

code.execute

Execute sandboxed Python

code.sandbox

Manage persistent sandbox sessions

data.create_table

Create tabular data table

data.insert

Insert rows into table

data.update

Update rows by primary key

data.delete

Delete rows (tombstone)

data.query

SQL query with LWW merge


Memory Actions (20 actions)#

Session memory, long-term memory, caching, and graph storage.

Action

Description

memory.store

Store in session memory

memory.retrieve

Retrieve from session

memory.summarize

Summarize with LLM

ltm.store

Store in long-term memory

ltm.retrieve

Retrieve from LTM

ltm.delete

Delete from LTM

ltm.search

Search LTM by pattern

cache.wrap

Cache action results

cache.get

Get cached value

cache.invalidate

Invalidate cache entries

memory.cloud_store

Firebase Agent Memory store

memory.cloud_retrieve

Firebase retrieve

memory.cloud_list

Firebase list memories

memory.grep

Text search with ranking

memory.sql_query

SQL query via DuckDB

memory.embed

Generate embeddings

memory.vector_search

Vector similarity search

graph.store_entity

Store graph entity

graph.store_relation

Store graph relationship

graph.query

Query graph with Cypher/Datalog

Backends: SQLite, DuckDB, Firebase, CozoDB, Kuzu


Integration Actions (15 actions)#

External services, web scraping, RAG, and observability.

Action

Description

trace.start

Start trace span

trace.log

Log events/metrics

trace.end

End trace span

opik.healthcheck

Validate Opik connection

web.scrape

Scrape single page (Firecrawl)

web.crawl

Crawl multiple pages

web.search

Web search (Perplexity)

web.ai_scrape

AI-powered extraction (ScrapeGraphAI)

embedding.create

Generate embeddings

vector.store

Store with embeddings

vector.query

Semantic similarity search

tools.crewai

Execute CrewAI tools

tools.mcp

Execute MCP server tools

tools.langchain

Execute LangChain tools

tools.discover

Discover available tools

External APIs: Firecrawl, Perplexity, ScrapeGraphAI, Opik


Reasoning Actions (7 actions)#

AI reasoning patterns: Chain-of-Thought, ReAct, self-correction, and decomposition.

Action

Description

reason.cot

Chain-of-Thought structured reasoning

reason.react

ReAct thought-action-observation loop

reason.self_correct

Generate-critique-improve cycle

reason.decompose

Problem decomposition and synthesis

reason.dspy.cot

DSPy ChainOfThought wrapper

reason.dspy.react

DSPy ReAct wrapper

reason.dspy.compile

Compile DSPy module

Features: Multiple thinking formats, tool integration, multi-model support, Opik-compatible traces


Specialized Actions (15 actions)#

Checkpoints, schema manipulation, document extraction, validation, rate limiting, and secrets management.

Action

Description

checkpoint.save

Save workflow checkpoint

checkpoint.load

Load checkpoint

schema.merge

Deep merge JSON Schemas

llamaextract.extract

Extract structured data from documents

llamaextract.upload_agent

Create LlamaExtract agent

llamaextract.list_agents

List extraction agents

llamaextract.get_agent

Get agent details

llamaextract.delete_agent

Delete extraction agent

validate.extraction

3-layer extraction validation

validate.generate_prompt

Generate extraction prompt

retry.loop

Retry with correction node

ratelimit.wrap

Rate limit any action (RPM/RPS)

secrets.get

Get secret from cloud provider

secrets.has

Check if secret exists

Custom Actions

Register Python functions

Features: Prolog constraints, semantic probes, checkpoint persistence, rate limiting, cloud secrets (AWS, Azure, GCP)


Multi-Agent Actions (5 actions)#

Multi-agent collaboration primitives for orchestrating multiple AI agents.

Action

Description

agent.dispatch

Dispatch task to single named agent

agent.parallel

Parallel dispatch with aggregation strategies

agent.sequential

Chain agents where output feeds next

agent.coordinate

Leader-worker coordination pattern

agent.crewai_delegate

CrewAI integration with native fallback

Features: Agent registry, consensus/voting aggregation, sequential chaining, leader-worker coordination, CrewAI integration


Planning Actions (4 actions)#

Planning and decomposition primitives for complex task management.

Action

Description

plan.decompose

Decompose goal into subtasks with dependencies

plan.execute

Execute plan respecting dependency order

plan.replan

Re-plan from current state preserving completed work

plan.status

Get plan execution status

Features: DAG-based dependencies, parallel/sequential execution, failure handling strategies (replan/retry/skip/abort), checkpoint integration


A2A Communication Actions (10 actions)#

Inter-agent communication primitives for distributed agent systems.

Action

Description

a2a.send

Send message to specific agent

a2a.receive

Receive messages with filtering

a2a.broadcast

Broadcast to all agents in namespace

a2a.delegate

Request/response with fallback

a2a.state.get

Get shared state value

a2a.state.set

Set shared state with optimistic locking

a2a.discover

Discover available agents

a2a.register

Register agent for discovery

a2a.unregister

Unregister agent

a2a.heartbeat

Update agent last_seen timestamp

Features: Namespace isolation, optimistic locking, capability-based discovery, timeout handling, delegation fallbacks


Reflection Actions (3 actions)#

Self-correcting agent patterns with generate-evaluate-correct loops.

Action

Description

reflection.loop

Execute generate→evaluate→correct cycle

reflection.evaluate

Standalone evaluation (schema, LLM, custom)

reflection.correct

Standalone correction action

Features: JSON Schema validation, LLM-as-judge evaluation, custom Python/Lua/Prolog evaluators, multiple failure strategies, iteration history tracking


Cloud Production Actions (20 actions)#

Enterprise-grade capabilities for production deployment.

Action

Description

session.load

Load session data by ID

session.save

Persist state to session backend

session.delete

Delete session

session.exists

Check if session exists

firestore.get

Get Firestore document

firestore.set

Create/update document

firestore.query

Query with filters

firestore.delete

Delete document

firestore.batch

Atomic batch operations

auth.verify

Verify authentication token

auth.get_user

Get user profile by UID

validate.input

Validate data against schema

validate.schema

Create reusable validator

http.respond

Custom HTTP response with early termination

error.is_retryable

Check if error is retryable

error.clear

Clear error from state

error.get

Get error info

error.has

Check if error exists

error.type

Get error type

error.retry

Retry last failed action

Features: Session persistence, Firestore CRUD, Firebase/JWT auth, input validation, HTTP response transformation, structured error handling


Dual Namespace Convention#

All actions support two naming conventions:

# Dotted namespace (recommended)
- uses: llm.call
- uses: file.read
- uses: memory.store

# Underscore namespace (alternative)
- uses: actions.llm_call
- uses: actions.file_read
- uses: actions.memory_store

Both forms are functionally identical. The dotted namespace is preferred for readability.


Action Anatomy#

Every action follows a consistent structure:

- name: step_name           # Unique identifier for this step
  uses: category.action     # Action to execute
  with:                     # Parameters (action-specific)
    param1: value1
    param2: "{{ state.dynamic }}"
  output: result_key        # Where to store results in state
  condition: "{{ state.should_run }}"  # Optional: skip if false

Common Return Fields:

Field

Type

Description

success

bool

Whether action succeeded

error

string

Error message (on failure)

error_type

string

Error category for handling


Error Handling#

Actions return structured errors for conditional handling:

- name: risky_operation
  uses: http.get
  with:
    url: "{{ state.url }}"
  output: result

- name: handle_error
  condition: "{{ not result.success }}"
  uses: llm.call
  with:
    model: gpt-4
    messages:
      - role: user
        content: "Handle error: {{ result.error }}"

See Also#